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Abstract

For classical Bernstein operators over the unit square, we obtain the best uniform constant
in preservation of the usual /,,-modulus of continuity, at the same time we show that it
coincides with the corresponding best uniform constant for bivariate Szasz operators. The
result validates a conjecture stated in a previous paper. The proof involves both probabilistic
and analytic arguments, as well as numerical computation of some specific values.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction and main result

For n,k = 1,2, ... let BS*> = B,® --- ® B, be the tensor product of k copies of
the classical Bernstein operator over the interval [0, 1] given by

B ()= Y flie/m) (1=t
k=0
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and denote by C{¥”(3) the best constant in preservation of the usual modulus of
continuity for the /,,-norm in R, that is

Bk>£.5
Cik2(8) = sup w(B,”/39)

, 0<o<l,
feFy w(f75)

where 7 is the set of all real non-constant bounded functions on [0, 1]*, and w(f; )
stands for the above-mentioned modulus of continuity, i.e.,

o(f;8) = sup{lf (x) = f(¥)| : x,y€[0, 1], |Ix = y[|,. <3}, 6>0.

On the other hand, for >0 and k=1,2, ..., let S,<k> =S5;®--®S; be the
tensor product of k copies of the Szasz—Mirakyan operator S, over the interval
[0, 00) given by

o0 )k
Syg jg: g k/t _u '
k=0 k!

and denote by ka> (9) the corresponding best constant for such an operator, i.e.,

<k .
D2 (5) = sup M, 0>0,
geY) (}J(g;é)

where %) is the set of all real non-constant functions g on [0, oo)k such that
w(g; 1)< oo (or, equivalently, w(g; )< oo for all §>0).

Many facts about C<K>(5) and DS*? (6) are known in the literature. In [4], the
reader can find explicit probabilistic formulae for such constants (to be used in the
next section) which generalize the one-dimensional formulae given in [1]. From the

formula for D{*” (8), it follows that
DSR2 (8) = DSR2 (16),  1,6>0,

implying that the best uniform constant sup5>0D,<k ’ () only depends upon the
dimension k. The facts

sup C{7(0)=2 (n=1) and sup DSV (6)=2—e! (1>0)

0<o<l1 >0
were respectively established in [2,6]. It was shown in [5] that, for k>3,

sup CR2(8) =k = sup D1<k>(5)7 n=l,
0<o<l1 0>0

that is, the best uniform constants coincide with the dimension, and (as in the one-
dimensional case) the one for B,fk > does not depend upon the parameter n, while, in
the case k = 2, the value of supy5<; C<?? () depends upon n, and both the values of
SUP,> 1 SUPg <5< CS2(8) and sups. (D>’ (9) lie in the interval [2,5/2]. As for the
exact value of these quantities, on the basis of certain computational evidence, it was
conjectured the following.
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Theorem. We have
sup D7 (8) =sup sup C 2 (0)

0>0 n=1 0<o<l

: 2
o0 J 1
=l-e’+) 1—e2<§ jﬁ> —2.3884423... . (1)
Jj=0 ’

i=0

In the present paper, we give a theoretical proof of this result.

2. Auxiliary results

In this section, we introduce some notations, restate the preceding theorem in a
more convenient form for our purposes, and collect some necessary auxiliary results.
We set, for n>1 and 0<x<n,

Co(x) = CS¥ (x/n).

We recall that, according to the formulae in [3], we have

qszﬁm]

X

where E denotes mathematical expectation, [ - | is the ceiling function, and #,(x) :
=1,/ (x)vy,(x) is the maximum of two independent integer-valued random
variables #,/(x) and #)/(x) having the same binomial distribution given by

n X\ K X\ n—k
P(n, (x) = k) = pui(x) = <k>(;) (1—;) k=0,1,...n,

0 otherwise.

We also denote by

C(x) = POy () >0) 4 21—y 2y o ElD)

and recall that

En) = 3 kP(n(x) = £) = 3 P(,(x) k)

k 2

1 - (Z Pw’(x)> .
=0

Similarly, we set, for x>0,

D) = D () = £| ),

>~
Il
-
>
Il
_

n—1

k=0

X
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and

( )vE’(x) is the maximum of two independent random variables
having the same Poisson distribution of parameter x, i.e.,

PE(x)=k)=m(x) =e "~ k=0,1,2,....

With the preceding notations, it is clear that (1) can be rewritten as follows:

sup sup GC,(x)=sup D(x) = D*(1). (2)

n=1 0<x<n x>0

The point is that the functions C,(-) and D(-) are quite irregular and hardly
tractable, but C;(-) and D*(-) are fairly smooth. The following lemmas collect the
necessary facts for the proof of (2) given in the next section.

Lemma 1. We have

(a)

C(x)<C,(x), n=1, O<x<n

Proof. Both inequalities are nothing but particular cases of the inequality
E[U|<P(U>0)+EU,

which holds true for every nonnegative random variable U. O

Lemma 2. We have
C,(x)<D*(x), n=l, 0<x<n.

Proof. Fix n>1 and xe(0,n], and denote by

Ay = P ’7” \ Z Pn/

be = PE(x)<h) =Y ().

J=0
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for k=0,1,2,.... From some results of Anderson and Samuels [3, Corollary 2.1],
there is an integer r>1 such that
anp <by, 0<k<r-—1,

an,k>bka k>r (3)
We have
E&(x) — En,(x) = Z 1-b2) Z (1-a.
k=0 k=0
= Z (aik bi)
k=0
= a121,0 - bé + Z (an.,k + bk)(an‘k - bk)
k=1

o0

a20 — b% + (anﬁr + br) (an,k - bk)7
=1
the inequality by (3) and the fact that the sequence {a,i+ bi:k=0} is
nondecreasing. Since

i (an‘k - bk) = i (1 - bk) - i (1 - an,k) - (an,O - bO)
k=1 k=0 k=0

=[E¢'(x) — En,/(x)] — (ano — bo)

= - (an,O - b())

(the last equality because E&'(x) = x = En,'(x)), and
any + br>an,l +b= (1 + x)(an,() + b0>7

we finally obtain that
E&(x) — En,(x) > x(b5 — dy),

which is another way to express the conclusion. [

Lemma 3. We have:

(a)
d
xaEﬂn(X) = E’/’n(x) - E kpr%,k(x)a I’l}l, XE(O,I’[].

(b)
d [e¢]

xaEé(x) = E¢(x) — kni(x), x>0.

Proof. Let n>1 be fixed. It is immediate that we have, for xe(0,x] and k>0,

d
x%pn,k(x) = kpﬂ,k(x) - (k + l)pn‘k+1(x)7



122 J. De La Cal et al. | Journal of Approximation Theory 123 (2003) 117-124

implying that
dxzpn/ k"’l)pnk-H( )

and, therefore,

k 2
xdx<z pn,i(x)> = — (k+ 1)2P(n, (x) <k)P('(x) =k + 1)
| — (k+ 1)[P(n, (x) <k)P(n,(x) = k +1)
+ P(n(x)<k)P(n, (x) = k +1)]
= — (k+ D[P, (x) =k +1) = pp 1 (x)].

We conclude that

n—1 k 2
tmenigl ()]

k=0 j=0
= Z kP ']n - Z kpnk
k=1
_Enn Z kpnk

showing part (a). The proof of (b) is achieved in the same way, by starting from the
fact that we have

xdiink(x) = knp(x) — (k + Dmper(x),

for all x>0 and k>0. O

Lemma 4. (a) For each n>1, the function x'En,(x) is decreasing in (0,n).
(b) The function x~'E&(x) is decreasing in (0, o0).
(c) The function D*(-) is increasing in (0,1] and decreasing in [3/2, o).

Proof. From the preceding lemma, we have

AEW) _ LSS e (<0, a1, xe(0],

dx x x2 —
and
d E&(x) 1 &<, =~ 1
— = —— k = — <O, >0, 4
dx  x 2 ;:1: T (X) 1?:0 kil e (x) X 4)
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showing parts (a) and (b). From (4), we also have, for x>0,

%D*(X) :%[1 —my(x) + Eé)ﬁx)}

If xe(0, 1], we have

ikﬂ(k') Zk+l<k') <%(e_1)<1»

implying that £D*(x)>0, while, for x>3/2,

S () 5 (%) 10 -

which implies that %D* (x)<0. This shows part (c), and completes the proof of the
lemma. [

Lemma 5. We have:
(a) 11?11 Cu(x) = Cx(1), n=>1.
(b) lim C:(1) = D*(1).
(c) ligl D(x) = D*(1).
(d) EE(1) = D*(1) — 1 + e = 1.52377761 ... .
(e) D*(1.55) = 2.38835554... .

Proof. We have, for n>1,

i G, () = tim 3 [%| P =) = 3 e DPOLD =)
k=1 =1

k
=P(n,(1)>0) + En,(1) = C,(1),
showing part (a). Part (c) is shown in the same way, and we omit the details. Part (b)
readily follows from the fact that
lim pn_’k(l)zn'k(l), k=0,1,2,...

(i.e., the Poisson approximation to the binomial distribution). Finally, parts (d) and
(e) merely are numerical computations. [
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3. Proof of the theorem

Recall the numerical value of D*(1) appearing in (1). We have, by Lemmas 1, 2,
4(c) and 5(e),

D(x)<D*(x)<D*(1), 0<x<l,
C(x)<C(x)<D*(x)<D*(1), 0<x<l, nxz1,
D(x)<D*(x)<D*(1.55)<D*(1), x>1.55,
C(x)<C,(x)<D*(x)<D*(1.55)<D*(1), n=2, 1.55<x<n.

Let 1 <x<1.55. Using the fact that the random variable £(x) is integer-valued, and
Lemmas 4(b) and 5(d), we obtain

D(x)< E[¢(x) | = ES(x) <xEE(1)
< 1.55EE(1) = 2.361855... < D*(1),
and, analogously, by Lemmas 2 and 4(a),
Ca(x)<E[n,(x) | = En,(x)<xEn,(1)<x E{(1)<D*(1), n=2.
From all the above, we conclude that
sup sup C,(x)<D*(1) and sup D(x)<D*(1). (5)

n=z1 0<x<n x>0
Finally, we have, by Lemma 5(c)

sup D(x)= lim D(x) = D*(1),

x>0 x11

and, by Lemma 5(a,b),
sup sup GC,(x)= lim lim C,(x) = D*(1),

n=1 0<x<n n—o x11

showing that the inequalities in (5) actually are equalities, and finishing the proof of (2).
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